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B \What is this talk about?

Meta-analysis and statistics, right?

* What are effect sizes, and why should we care?

* Why would we combine effect sizes and how?

* What are some things to consider when combining effect sizes?
* Complexifying issues in analysis

* Some examples with the R package metafor.
— Also weightr for one example
— Feel free to code along while | talk!
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Bl \What are the statistics of meta-analysis?

* We have already identified relevant studies and data within studies.
— Dr. Muhammad’s Statistically Speaking talk.

Statistical Modelling

Fixed/random effects
Heterogeneity
Publication bias

Statistical Sleuthing

Effect size calculation
and conversion

Meta-analytic

Results
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Bl Example

Dagostino, 1998

9 studies examining the impact of antihistamines on runny nose severity for
the common cold

e Outcome: Change in runny nose severity after 2 days
— 4 different scales (0-3, 0-4, 0-8, 0-10)
« 2 different drugs: chlorpheniramine and doxylamine
* Some studies find statistically significant effects, some don’t
* One study finds a negative effect

How do we make sense of all of these?
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Effect Sizes

What are they? Can we combine them?



B \What is an effect size?

Some statistical considerations for a single study

* Estimand @
— “True” effect
— Parameter

— Function of the data

— Standard error:

— Sampling or estimation error
variance that decreases with
sample size

Confidence/credible intervals
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B \What is an effect size?

Some statistical considerations for multiple studies

Fori=1,..., k
* Estimands @
— “True” effects

— Parameters 0
— Functions of the data
— Standard errors: 6

— Sampling or estimation error
variance that decrease with
sample size

* Confidence/credible intervals
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B \What we talk about when we talk about effect sizes

Some statistical considerations for multiple studies

e Estimands @ (effect size parameter)

* The scale of estimands and estimates (effect size index)
— Consider a two-armed study (Treatment vs. Control)
* T-C mean difference: pir — ¢
» T-C standardized mean difference (Cohen’s d is “scale-free”...kind

of): (pr — 1)/
* T-C odds ratio (log transform), risk difference, ...

— Correlation coefficient (arctan transform)
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B \Where do effect sizes come from?

* To run a meta-analysis we need both the effect estimate 7. and
variance

* To compute an effect size estimates and variances, we need data:
— Raw data (unlikely for every or even most studies)
— Summary statistics

* Often reported in primary research
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Bl Effect size calculation is not always trivial
Example: Cohen’s din a 2-armed RCT

Yir ~N(uy, ) and Yie ™ N(ug, 6%)
-i=1,..n;andi=1, .., n,

- n=n;+n,

Cohen’s d = (ur — uc)/s
Estimate (Glass, 1976)

. . ’ I n2 Y _7
* Bias correction (Hedges’ g): g = n_(z [2) e 1)T2 +i —
’_I‘(n—B/ )\/ nr 517;_2 c-Vs¢
4n—12 Yr-Y¢

* Approximate bias correction: g =

4n-9 \/(nT 1)sT+(nC 1)sC

* Required to compute:
— Treatment and control means
— Treatment and control sample sizes
— Treatment and control standard deviations (or some pooled SD)
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Bl Effect size calculation is not always trivial
Example: Cohen’s din a 2-armed RCT

n—-2 V..V

* Bias correction (Hedges’ g): g = /) 1 ¥c
n—-2- n-3 (np—1)s%+(nc—1)s2
P2r(nezyy [t et

n-2

. _ , 4n—12 Yr—Y,
* Approximate bias correction: g = - —— \/ —

(np-1)s%+(nc-1)s&
n-2

* Itis possible to obtain the pooled standard deviation via test statistics:

YT YC - Yr—Y¢ 1

\/ \/(nT 1)sT+<nc 1)s2 \/( 1 J;)
TlT TLC nr nC

* Itis possible to get (approxmate) pooled SD from the SE:

- SE E\/s2 (nir-l_n_lc)

-t=
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Bl Effect size calculation is not always trivial
Example: (log) odds ratio in a 2-armed RCT

* Y:~B(n,, m;) and Y.~ B(n, 1tc)
- n+ne.=n

. .o _ Fr/(A-mr)
Odds ratio A e g—

Yr/(nr—YT)

Yc/(nc—Yc)

Yr/ (TlT—YT))

Yc/(nc—Yc)

* Asymptotically, log(z) ~N(log(2) ’Yi +
T

* Estimate

—z=log(

LU S

nr=Yr Y¢ nec-Y¢

)
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Bl A quick look at effect size calculations in R

Introduction to
* Dagostino (1998) impact of library(metafor)
antihistamines on runny nose dag_es <- escalc(

severity for the common cold. - “SMD”. # “OR”, “RR”, etc.

=mt, # treatment means

= mc, # control means

= sdt, # treatment SDs

= sdc, # control SDs
= nt, # treatment group sample size
= nc # control group sample size

= metafor::dat.dagostino1998 %>%
filter(outcome == “rnic2”)

)
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https://www.metafor-project.org/doku.php

B \What do we need to know about effect sizes?

* Effect parameters should be conceptually similar enough to consider jointly.
* Effect size indices need to be the same across studies.

— What effect size index makes sense?

* In our example, outcomes pertain to the same construct (runny nose), but are on different
scales (e.g., 0-3, 0-4, 0-8, or 0-10).
* We can put them on similar scales via Cohen’s d.

— It is often possible (with some normality assumptions) to convert from

one scale to another:
* d<—>log(odds ratio) <—> correlation
* It may not be conceptually appropriate to change scales even if it is technically feasible.
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B How do we visualize data in a meta-analysis?
Forest plot

Study ID SMD [95% Cl)
1 —a— 0.39 [ 0.15, 0.64)
2 - 0.26 [-0.09. 0.61)
3 ' ‘ 0.35 [-0.43, 1.12]
4 ' 0.41[-0.30, 1.12)
5 ey -0.11 [-0.70. 0.48)
6 —_— 0.00 [-0.45. 0.48]
7 4 0.66 [ 0.01.1.32]
8 ' ' 0.45 [-0.45. 1.34)
@ —a— 0.18 [-0.02, 0.38)

- 0.250.13, 0.38)

| ] | | 1 |
-1 0.5 0 0.5 1 1.5

Standarazed Mean Difference
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B How do we visualize data in a meta-analysis?
Forest plot

# quick meta-analysis fit, we’ll come back to this later

remod <- rma(yi =i, vi = vi, data = dag_es, method = "PM", knha = TRUE)
# make a forest plot

forest(remod, cex=.75, header="Study ID",

mlab="", slab = dag_esSstudy)
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B FEffect sizes

Summary

* We need effect estimates and variances (or SEs)
* They need to be on the same scale

— We can often convert between effect size scales
* We should start by visualizing with a forest plot
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Combining Effect Sizes

Goals of analyses, and basics for estimation



B \What is an effect size?

Some statistical considerations for multiple studies

* Estimands @
— “True” effects
— Parameters

— Functions of the data

— Standard errors:

— Sampling or estimation error B 6
variance that decrease with
sample size

Confidence/credible intervals

Assumptions about the studies/effects will govern if we do a fixed- or random-
effects meta-analysis
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B Fixed-effects meta-analysis

Strong assumptions ahead!

* Early statistical theory in the 1980s focused on fixed-effects models:
- 0,=6,=..=6,=6
* Inferential goal: Estimate &and report SE/CI, etc

Study 1 — a8 ®

Study 2

Study 3

00 01 02 03 04 05 06 07 08 09 10 11 1.2
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B Fixed-effects meta-analysis

Strong assumptions ahead!

* Early statistical theory in the 1980s focused on fixed-effects models:
- 0,=06,=..=6,=0
* Assumes that studies are identical enough to produce identical effects.

— Evidence from direct replications suggests we can’t always do this even if
we’re explicitly trying to do so.

Study 1 — 3] &

Study 2

= T

Study 3 pm— 8 ©
A 4

00 01 02 03 04 05 06 07 08 09 10 11 1.2
0
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Bl Random-effects meta-analysis
Weaker assumptions

* Assumes @ #6, instead the g vary randomly:
- 6~ N, %)

* Need not be normal, but it’s a common assumption.

* Assumes that studies are a random sample from some population.

/Vf
Study 1 _._’-1‘/'_.\_

Study 2 | .

_'——-/ Y . \
L it “ w " n 0
7}
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Bl Random-effects meta-analysis
Weaker assumptions

* Assumes @ #6, instead the g vary randomly:
— 91 ~ N(l’ll ,CZ)
* Need not be normal, but it’s a common assumption.

* Inferential goal: Estimate p, t2and report SE/CI, etc.
— Report intervals likely to contain future values of & (prediction interval)

/V1
Studyi — —& @ S _

Study 2 | .

e ——
» i ] 1m0 " n 03
H
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Bl Comparing fixed- and random-effects analyses

Fixed-effects analysis Random-effects analysis
— Assumes common underlying effect - Mean of a distribution of effect
across all studies parameters

— Prediction interval for future effects
* One source of variation * Two sources of variation

— Between-study variation
* Estimate between-study variation

/ V’
/ Vz
Study 2
= Study 2

70

Study 3 /

N /P ) o e

00 01 02 03 04 05 06 07 08 09 10 11 1.2 L " L 0 " e AL

0 M



B Should | use fixed- or random-effects models?

* The Q-test for heterogeneity testsH,: 6, =6, =... = 6,
(rest)
Ti—Zéc=1 io_g>
- Q= Z£{=1 o2 Y~ X1

* However, the Q-test has low power unless there are a large number of
effects (k > 50-80).

* Unless there is a large # of effects, Q is not advised for discerning between
model specification.

* Instead, choice should be consistent with beliefs about the studies
— My default: random-effects

— Caveat: there needs to be enough studies to estimate the between-study
variation (k > 5-10)
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B Meta-analysis model

T.~N(w, “+07)

Within-study
variance

* Target of inference is the distribution of the effect parameters characterized by
and 2
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B Meta-analysis model

T,=u+r+e where and e, ~ N(O 0/2)

Within-study
variance

* Target of inference is the distribution of the effect parameters characterized by
and 2

™ Northwestern Medicine’

Feinberg School of Medicine



B Meta-analysis model

T.~N(w, “+07) Ti=w+r+e wherer N0, “Jand e~ N(Oc?)

Between-study Within-study Between-study Within-study

variance variance variance variance

* Target of inference is the distribution of the effect parameters characterized by
and 2
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Bl Meta-analysis model

* T.~N(u, v° +37) T.=u+r;+e; wherer,~N(O, t°) and e;~ N(0 5?)
* UMVUE (and MLE) of
_ k T
S
— T is asymptotically normal with variance V[’I_".] = SF ! "
i=1 Wi

* NHSTHy:u=0
* 95% Clfor pn

* No UMVUE for t2
— REML
— Moment estimators: DerSimonian-Laird, Paule-Mandel, etc.
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Bl Meta-analysis model

Estimation

— Zk= W*T
« T. ==L where w/'= o
Zi=1 i T¢40
Tl . . . e 1
— T. is asymptotically normal with variance V[T.] = S
i=1 Wi

e NHSTHy: p1=0
* Use a Knapp-Hartung correction (like a t-test)

* 95% Cl for u
« Use T. and 2 to make inferences about the distribution of future 6

— 95% prediction interval
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B \Weighting

Mean effects are estimated using

* 1
W: = ———
L 22407
More weight goes to T; with smaller 62 saint
Kelly
Pilbeam
Lane
Wright
D
Ina FE model, 12=0, so w; = — g
O'i Summary
- Larger variation in weights
- Mean pulled harder toward some T,
*— 1 Saint
Ina REmodel, w; = =
T +O'i Kelly
- Less variation in weights than FE moen
- Mean pulled less strongly Wirignt
Day
Summary
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Odds
Ratio

0.69
0.75
0.68
027
0.66
0.85

0.48

Odds
Ratio
0.69
0.75
0.68
0.27
0.66
0.85

0.57

Odds ratio (Fixed effect)
Relative Odds ratio
Weight and 95% confidence interval
13% ]
8% L
15% O
8% =
15% ]
100% e
0.20 0.50 1.0 20 5.0
Odds ratio (Random effects)
Relative Odds ratio
Weight and 95% confidence interval
16% B
12% |
17% | |
% —f—
13% B
17% ]
100% —=eEZR—
0.20 0.50 1.0 20 5.0



Bl A note on inference for between-study variance

* The scale of 12 depends on the scale of the &
— Alternatively, we can quantify t2in a manner that is “scale-free” relative

to the “typical” within-study variance 2
o L2 acti T_Z _ T*+0? total variation
H* estimates 1 + 62 o2  within—study varation

2 __ between-study variation

. T
* [ estimates = .
T2+02 total varation

I”

— Pvalues > 30-40% are often considered “meaningfu
— H?values > 1.33-1.75 are considered “large” or “meaningful”
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Bl A typical meta-anlysis

* Estimate of the mean effect
- SE, Cl

— NHST that p=0
* Use KNHA adjustment!

 Estimate of the variance
- R
—

* Prediction Interval
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remod <- rma(
=vi, # effect estimates
= vi, # variances of effect estimates
= dag_es, # dataset
="PM", # use the Paule-Mandel RE model
= TRUE # small-sample adjustment for tests
)
summary(remod) # view results
predict(remod) # get prediction interval



Bl A typical meta-anlysis

Results

* Estimate of the mean effect Random-Effects Model (k = 9; tau”*2 estimator: PM)
— SE, CI

— NHST that p=0
* Use KNHA adjustment!

e Estimate of the variance

loglLik deviance AIC BIC AlCc
1.1942 6.2132 1.6117 2.0061 3.6117

tau”2 (estimated amount of total heterogeneity): O (SE = 0.0181)

— P
, tau (square root of estimated tau”2 value): 0
- H |22 (total heterogeneity / total variability): 0.00%
* Prediction Interval HA2 (total variability / sampling variability): 1.00

Test for Heterogeneity:
Q(df = 8) = 6.2132, p-val = 0.6234
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Bl A typical meta-anlysis

Results

* Estimate of the mean effectp  Model Results:

- SE, ClI
— NHSTthat p=0 estimate se tval  df pval cilb  ciub
» Use KNHA adjustment! 0.2539 0.0558 4.5480 8 0.0019 0.1252 0.3827 **
* Estimate of the variance
- 2 _—
) Signif. codes: 0 “***’0.001 **"0.01 “*0.0570.1°"1

* Prediction Interval
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Bl A typical meta-anlysis

Results

* Estimate of the mean effect
— SE, Cl
— NHST that p=0
* Use KNHA adjustment!
* Estimate of the variance

— I2
- H? pred se cilo ciub pilb piub
* Prediction Interval 0.2539 0.0558 0.1252 0.3827 0.1252 0.3827
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Bl Summarize everything with a forest plot

# make a forest plot
forest(remod, cex=.75, header="Study ID",
"" slab = dag_esSstudy)
# add text with Q-value, dfs, p-value, and 12 statistic
text(-16, -1, pos=4, cex=0.75,
bquote(paste("RE Model (Q =",
.(formatC(remodSQE, digits=2, format="f")),
", df =", .(remodSk - remodSp),
", p=", .(formatC(remodSQEp, digits=2, format="f")),
A, =",

.(formatC(remodSI2, digits=1, format="{")), "%)")))

mlab=
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B A typical meta-analysis

Results

Study ID SMD [95% CI]
1 —— 0.39[0.15. 0.64]
2 ——i 0.26 [-0.09, 0.61)
3 ' ' 0.35 [-0.43, 1.12)
4 ' 0.41[-0.30, 1.12)
5 ' ' -0.11 [0.70. 0.48]
5 —— 0.00 [-0.45. 0.48)
7 ' i 0.66 [ 0.01. 1.32]
8 ' ' 0.45 [-0.45, 1.34)
9 - 0.18 [-0.02. 0.38)
RE Model (Q =6.21, df = 8, p= 0.62; P = 0.0%) & - 0.250.13. 0.38)

| ] | | I |
-1 0.5 0 0.5 1 1.5

Standarazed Mean Difference
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Selection and publication bias

Beware the published record



Bl Are our effect sizes “representative”?

Rosenthal’s File Drawer problem

e Systematic reviews are often
dominated by published
research.

.and this is where we put the
non-significant results.

d,
A '/(. 1)

som@cards

user card

* Are we only seeing a subset of relevant effect sizes?

— Selective reporting within studies

* “We reported the contrasts for which we found significant results”

— Selective reporting of entire studies

* “We didn’t get a significant result so we didn’t feel the need to publish”
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|H

results?

B Can we tell if we’'re missing “nul
Funnel Plots

* Studies with high statistical power are
unlikely to have null results (assuming
effects are nonzero).

* Studies with low statistical power are
more likely to have null results.

* Studies with low statistical power
tend to have higher within-study
variation.
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|II

Bl Can we tell if we’re missing “null” results?

Funnel Plots

* Studies with high statistical power are
unlikely to have null results (assuming
effects are nonzero).

* Studies with low statistical power are
more likely to have null results.

* Studies with low statistical power
tend to have higher within-study
variation.
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B Funnel plots

funnel(remod)

Standard Error
0.341 0.227 0.114

0.455

Standardized Mean Difference
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Bl Tests for funnel plot asymmetry

* Egger’s test
1. Fitthe model T; = 4 + p,c;
2. TestH,: =0
Tests can also regress T, on 62 or look at the rank correlation between T; & G,

regtest(remod)
Regression Test for Funnel Plot Asymmetry

Model: mixed-effects meta-regression model
Predictor: standard error

Test for Funnel Plot Asymmetry: t =0.3521, df =7, p=0.7351
Limit Estimate (as sei ->0): b =0.2160 (Cl: -0.0750, 0.5069)
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Bl Adjustments

* Trim and fill
* Selection models (likelihood based approach)

* Can be seen as outright corrections to biased parameter estimates, or as sensitivity
analyses.

* Avoid p-curve, PEESE, and PET-PEESE
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B  Trim and fill

* Trim: remove some of the oversampled significant results <>
lterate

* Fill: impute “missing” nonsignficant results <

S T S T
I . I | .
. N h v :
o : @ o e
5 . 5 .
W ; W ;
T N T N
g N 7 o g N 7 .
© o © o
[ = [ =
s s
7] 7]
°
- -
< L] s L
[ s [ s
e - e .
. .
w w
Q - . 2 .
= T T T = T T
-0.5 0 05 1 -0.5 0 0.5
Standardized Mean Difference Standardized Mean Difference
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B Selection models

* Likelihood based approach
— Assume T; are unconditionally normal
— T.is observed (R; = 1) with some probability zgiven its p-value is <0.05 (3P model)
- p(T;|IR; = 1) x

B(T; w72 +02) {1 = 196} +ng(Ty; w72 + 7)1

— Likelihood-based estimates for u, T%and 7

'T'<196}

Probability of a non-
significant effect being
reported is 7
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Bl Example

Trim and fill

tf <- trimfill(remod) Estimated number of missing studies on the left side: 1 (SE = 2.1192)

summary(tf)
predict(tf) tau”2 (estimated amount of total heterogeneity): O (SE = 0.0183)
funnel(tf) tau (square root of estimated tau*2 value): 0

|2 (total heterogeneity / total variability): 0.00%
HA2 (total variability / sampling variability): 1.00

Test for Heterogeneity:
Q(df =9) = 7.8900, p-val =0.5453

Model Results:
estimate se zval pval ci.lb ci.ub
0.2386 0.0622 3.8338 0.0001 0.1166 0.3606 ***
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Bl Example

Selection model

weightr::weightfunct( Adjusted Model (k = 9):
= dag_esSyi, _ .
_ 4 & tau”r2 (estimated amount of total heterogeneity): 0.0000
= dag_es»vi, (SE = 0.0195)
=¢(0.05, 1) tau (square root of estimated tau”2 value): 0.0000

Test for Heterogeneity:
Q(df =8) =6.2132, p-val =0.7184092

Model Results:

estimate std.error z-stat  p-val ci.lb ci.ub
Intercept 0.2553 0.08518 2.9969 0.00273 0.08832 0.4222
0.05<p<1 1.0259 1.09665 0.9355 0.3495 -1.12346 3.1753

Likelihood Ratio Test:
XA2(df =1) =0.0005748692, p-val = 0.98087
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Bl Summary of publication bias

* If it makes sense, conduct and report assessments of publication bias
(funnel plots, Egger’s or Begg’s test)

* If there appears to be some publication bias, conduct and report
adjustments

— Trim-and-fill
— Selection models (for larger k)
— Avoid p-curve, PEESE, and PET-PEESE
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Meta-regression

It’s just like regular regression...sort of



Bl Summarizing conditional distributions
Are effects parameters related to observed covariates?

* Meta-regression concerns the relationship between effect sizes and
observed covariates

— How was a treatment implemented?

— Where did the study take place?

— On whom?
* Used to answer important questions:

— What is the treatment effect in populations >65 years-old?

— Does dosage matter for treatment effects?

— Is the correlation stronger in some countries, but not others?
 Referred to sometimes as “subgroup analysis” or “meta-regression”
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Bl Meta-regression model

O =XB+r,; Ti=Xf+r+e

- where r;~N(0, t?) and e;~ N(0, 67)

Dose
T;
1000

800 A \ T2
Prediction line
600 >
}\-L
400 > 5
o
200

00 01 02 03 04 05 06 07 08 09 10 11 1.2
Effect size
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Bl Estimation of meta-regression

* T~ N(X5 W) where W=diag(t* + c?)
« Basic WLS estimate: § = (X'WX) ' X'WT

* In practice, use a moment-based estimator for t2and plug-in to
estimate of [

— REML, Paule-Mandel, DerSimonian-Laird
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Bl \Weighted least squares for meta-regression

Regression of log risk ratio on latitude (Fixed-effect)

1.0

0.0
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10 20 30 40 50 60
Latitude

70



Bl Inference for meta-regression

* Point estimates and SEs: £3 is consistent with variance (X'WX) ™!
* Omnibus test that all coefficients are O
* Tests for individual coefficients
— Knapp-Hartung corrections!
* Heterogeneity estimates (including I?, H?)
* Prediction intervals (given X)
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Bl Example

Curtis 1998: Plant group and time of exposure

remod_mr <- rma( weightr::weightfunc(
vi=vi, estimate = dag_esSyi,
vi=vi, vi= dag_esSvi,
mods =~ drug, steps =¢(0.05, 1)
data =dag_es, )
method = "PM", # Cannot do trim-and-fill for

meta-regression
knha =TRUE

)

summary(remod_mr)
regtest(remod_mr)
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Bl Example

Curtis 1998: Plant group and time of exposure

Mixed-Effects Model (k = 9; tau”"2 estimator: PM)

tau”2 (estimated amount of residual heterogeneity): 0 (SE =0.0193)
tau (square root of estimated tau”2 value): 0

|22 (residual heterogeneity / unaccounted variability): 0.00%

HA2 (unaccounted variability / sampling variability): 1.00

RA2 (amount of heterogeneity accounted for): 0.00%

Test for Residual Heterogeneity:
QE(df =7) =4.6875, p-val = 0.6980
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Bl Example

Curtis 1998: Plant group and time of exposure

Test of Moderators (coefficient 2):
F(dfl=1, df2=7)=2.2783, p-val = 0.1749

Model Results:

estimate se tval df pval «cilb ciub
intrcpt 0.3482  0.0812 4.2900 7 0.0036 0.1563 0.5401 **
drugdoxylamine -0.1592  0.1055 -1.5094 7 0.1749 -0.4087 0.0902
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Summary




Bl Some points to consider

* Most meta-analyses involve

— Mean effect estimate + inference * Dependent effect sizes
* Weighted averages *  Model within- and between-
* Knapp-Hartung corrections study correlations

— Heterogeneity estimate + inference * Robust variance estimation
* T HLE e Missing data

— Checks of funnel plots/publication bias e FIML

* Egger’stest

— Publication bias corrections
* Trim-and-fill

* |mputation

* Selection weighting

— Meta-regression models
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Thank you!




B Resources

* Metafor
* |Introduction to Meta-Analysis
e Handbook of Research Synthesis
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https://www.metafor-project.org/doku.php
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470743386
https://www.russellsage.org/publications/handbook-research-synthesis-and-meta-analysis

