Northwestern

A Quest for Computing at Northwestern

Matt Selensky, PhD Computational Specialist Northwestern IT Research Computing Services

Applied Statistics Seminar

January 19th, 2024

Computing environments

A typical desktop/laptop

- Local access
- A single "node"
- Windows, MacOS, maybe Linux
- Limited to the hardware you can afford
- Lower RAM (4-16GB), lower core count (4-12), likely an integrated GPU
- Easy to use!

A "cluster"

- Remote access
- Many "nodes"
- Almost certainly Linux
- Limited to the hardware a large institution can afford (\$\$\$)
- Higher RAM (up to 1.5TB), higher core count (52+), dedicated GPU resources
- Takes time to learn!

What is Quest?

Quest: Northwestern's High-Performance Computing Cluster

Quest consists of ~1000 nodes

"Node" = computer

Each node consists of 28-64 cores

Technical specifications of nodes vary

There are several generations of nodes!

Generation	# cores per node	Total memory	Memory per core
Q9	40	192 GB	~4.8 GB
Q10	52	192 GB	~3.7 GB
Q11	64	256GB	~4GB
Q12	64	256GB	~4GB

Other types of nodes available for "General Access" (i.e., free) use

- "General Access"
 - 15 <u>A100 GPU</u> nodes
 - 40GB RAM (PCIE)
 - 80GB RAM (SXM)
 - 1 <u>high memory</u> node
 - 1.5TB RAM

https://www.nvidia.com/en-us/data-center/a100/

Extra resources for bioinformaticians at NU

- The "Genomics Compute Cluster" (GCC)
 - A special account funded by Feinberg & Weinberg to support bioinformatics/genomics research at NU
- 8 additional A100 GPU cards on 2 nodes
- 3 additional high memory nodes with RAM up to 1.5TB
- ~350TB of shared scratch space
- Dedicated support specialist: Haley Carter

Learn more about the GCC!

Quest Analytics Nodes

The Quest Analytics Nodes provide...

- On-demand access to Rstudio Server, Jupyter and SAS Studio through the web browser.
- Access to Quest file system.
- More computational resources than available on a personal computer.

The Quest Analytics Nodes are...

- Available to all Quest users with an active allocation
- Accessible while on GlobalProtect VPN outside the campus

Learn more about Quest Analytics Nodes

How can I start using Quest?

Apply for a general access allocation

Research I Allocation

- 1 paragraph statement of purpose
- Approval process within 5 business days
- Renew for allocation yearly

Research II Allocation

- Research I allocations can be upgraded to Research II allocations via Research II renewal form
- Requires a research proposal

Join the Genomics Compute Cluster!

Join allocation "b1042"

Request a Research Allocation

Please click on the link for the type of allocation you are requesting and complete the online form. If you are requesting a Research II Allocation, you will also need to fill out and attach the Research II Allocation Proposal to your application form.

Research Allocation I Original - Request to renew an existing R-I allocation or downgrade an existing R-II to R-I allocation for research purposes.

Research Allocation I Renewal - Request to renew an existing R-I allocation or upgrade an existing R-II to R-I allocation for research purposes.

Research Allocation II Original - Request to create a new R-II allocation for research purposes.

Research Allocation II Renewal - Request to renew an existing R-II allocation or upgrade and existing R-I to R-II allocation for research purposes.

Join an Existing Allocation - Request to join an existing allocation.

General access allocations are <u>totally free to use</u>

Purchasing resources on Quest

- "Buy-in" allocations are a great option for faculty wanting dedicated compute/storage on Quest
- Resources purchased for a period of 5 years
- <u>Contact us</u> if you are interested!

Request a Research Allocation

Please click on the link for the type of allocation you are requesting and complete the online form. If you are requesting a Research II Allocation, you will also need to fill out and attach the **Research II Allocation Proposal** to your application form.

Research Allocation I Original - Request to renew an existing R-I allocation or downgrade an existing R-II to R-I allocation for research purposes.

Research Allocation I Renewal - Request to renew an existing R-I allocation or upgrade an existing R-II to R-I allocation for research purposes.

Research Allocation II Original - Request to create a new R-II allocation for research purposes.

Research Allocation II Renewal - Request to renew an existing R-II allocation or upgrade and existing R-I to R-II allocation for research purposes.

Join an Existing Allocation - Request to join an existing alloc

More information about buy-in allocations

Quest's filesystem

- File system is shared across all computers on Quest
 - You can access your files & folders from anywhere you do not have to be on the same node
- You will be working with 4 main folders:

Folder	Description	Space
/home/ <netid></netid>	Personal home directory	80GB
/projects/ <allocid></allocid>	Allocation directory	1TB (R1) or 2TB (R2)
/scratch/ <netid></netid>	Scratch space (opt-in)	5TB
/hpc/software	System-level software	N/A

Quest's filesystem: extra resources

- <u>Quest Storage Knowledge</u> <u>Base</u>
- Quest Storage and Data
 Policy

	Home Space	Allocation or Project Space	Scratch Space
Storage Name	Home Directories	Allocation or Project Directories	Scratch Space Directories
Where is this located on Quest?	/home/ <netid></netid>	<pre>/projects /<allocation_id></allocation_id></pre>	<pre>/scratch/<netid></netid></pre>
What should go here?	Submission scripts, job log files, and local package and software installations	High-speed storage which should be used for computation Input/Output (IO) and/or data analyses.	High-speed storage which should be used for storing temporary files from running jobs, downloading data for processing, and short- term storage for large datasets.
What are the default permissi ons?	Only the user has read, write and execute permissions.	All members of the allocation will have read, write and/or execute permissions on files and directories created in the allocation directory.	Only the user has read, write and execute permissions.
How much disk space?	80GB	1TB with a Research Allocation I and 2 TB with a Research Allocation II. buyin allocations can purchase storage by the TB.	5TB

Transferring data to and from Quest: Globus

- Globus transfers have faster rates compared to scp, rsync or sftp.
- Globus enables collaboration and data sharing on local or remote systems
- "Fire and forget" transfers, retries any failed attempts, checks for corruption
- Learn more about Globus!

Submitting jobs to the Quest compute nodes

Log into the login nodes & submit jobs to the scheduler

Jobs: Requesting resources from SLURM

• Batch job

• Submit your job as a pre-written bash script

○ Benefit – submit & forget about it

Interactive job

- •Run interactive session on the compute nodes
- •Benefit exploratory work, troubleshooting etc.

Batch jobs – a special bash script

```
#!/bin/bash
#SBATCH --account=p12345
#SBATCH --partition=short
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --time=00:10:00
#SBATCH --mem-per-cpu=1G
#SBATCH --job-name=sample job
                                      SLURM
#SBATCH --output=outlog
#SBATCH --mail-type=END, FAIL
#SBATCH --mail-user=email@northwestern.edu
module purge all
                              Code you want to run
module load python/3.10.1
                                     on Quest
python hello world.py
```

Requesting resources from Learn more about batch jobs!

Interactive jobs

[netID@quser31 ~]\$ srun -A p12345 -p short -t
04:00:00 --mem=18G --pty bash -1

srun: job 4465087 queued and waiting for resources
srun: job 4465087 has been allocated resources

• • •

[netID@qnode9030 ~]\$

[netID@qnode9030 ~]\$ \$ echo "Hello, Applied Statistics Seminar" Hello, Applied Statistics Seminar Learn more about interactive jobs!

New service coming soon: Quest OnDemand!

- Browser-based tool
- Launch a variety of GUIs on a compute node without having to know how to use Slurm or the command line!
- Jupyter, RStudio, MATLAB, and more!
- Requires GlobalProtect VPN if you are off-campus

RStudio Server version: ecdf64c

This app will launch RStudio Server on the Quest cluster. Please take special care to list any additional modules in the appropriate section of the form below that you need to install and run R packages.

Please see Using R on Quest for more information about R on HPC.

~

 \downarrow List of other modules you want to load into your RStudio Server environment.

Select to use a virtual environment with RStudio Server

Live demonstration

Questions?

quest-help@northwestern.edu

Schedule a Zoom consultation with us

In-person office hours: Mondays 3-4pm at the Mudd Library GIS Lab (2nd Floor across from the bridge to Tech)

EXTRA SLIDES: Special types of jobs and extra Slurm information

Northwestern | INFORMATION TECHNOLOGY

Job Arrays

Getting Started: Multicore

#!/bin/bash #SBATCH --account=w10001 ## YOUR ACCOUNT pXXXX or bXXXX #SBATCH --partition=w10001 ### PARTITION (buyin, short, normal, etc) #SBATCH --nodes=1 ## how many computers do you need #SBATCH --ntasks-per-node=4 ## how many cpus or processors do you need on each computer #SBATCH --time=00:10:00 ## how long does this need to run #SBATCH --time=00:10:00 ## how much RAM do you need per CPU (affects your FairShare score!) #SBATCH --job-name=sample_job ## When you run squeue -u NETID this is how you can identify the job #SBATCH --output=outlog ## standard out and standard error goes to this file #SBATCH --mail-type=ALL ## you can receive e-mail alerts from SLURM when your job begins and when your job finishes (completed, failed, etc) #SBATCH --mail-user=email@u.northwestern.edu ## your email

module purge all
module load python-anaconda3
source activate /projects/intro/envs/slurm-py37-test

python slurm_test.py --nproc \${SLURM_NPROCS}

Getting Started: Multimode/MPI

#!/bin/bash

- #SBATCH --account=w10001 ## YOUR ACCOUNT pXXXX or bXXXX
- #SBATCH --partition=w10001 ### PARTITION (buyin, short, normal, etc)
- #SBATCH --nodes=2 ## how many computers do you need
- #SBATCH --ntasks-per-node=4 ## how many cpus or processors do you need on each computer
- #SBATCH --time=00:10:00 ## how long does this need to run
- #SBATCH --mem-per-cpu=1G ## how much RAM do you need per CPU (this affects your FairShare score)
- #SBATCH --job-name=sample job ## When you run squeue -u NETID this is how you can identify the job
- #SBATCH --output=outlog ## standard out and standard error goes to this file
- #SBATCH --mail-type=ALL ## e-mail alerts from SLURM about job status
- #SBATCH --mail-user=email@u.northwestern.edu ## your email

#SBATCH --constraint="[quest7|quest8|quest9|quest10]" ### you want computers you have requested to be from either quest7 or quest8 or quest 9 or quest10 nodes, not a combination of nodes. Important for MPI

module purge all
module load python-anaconda3
source activate /projects/intro/envs/slurm-py37-test

mpiexec -n \${SLURM_NTASKS} python -m mpi4py.bench helloworld

SLURM: Job-Array Example

#SBATCH --account=w10001 ## YOUR ACCOUNT pXXXX or bXXXX
#SBATCH --partition=w10001 ### PARTITION (buyin, short, normal, etc)
#SBATCH --narray=0-9 ## number of jobs to run "in parallel"
#SBATCH --nodes=1 ## how many computers do you need
#SBATCH --ntasks-per-node=1 ## how many cpus or processors do you need on each computer
#SBATCH --time=00:10:00 ## how long does this need to run (remember different partitions have restrictions on this
param)
#SBATCH --mem-per-cpu=1G ## how much RAM do you need per CPU (this effects your FairShare score so be careful to
not ask for more than you need))
#SBATCH --output=sample_job_\\${SLURM_ARRAY_TASK_ID}" ## use the task id in the name of the job
#SBATCH --mail-type=ALL ## you can receive e-mail alerts from SLURM when your job begins and when your job
finishes (completed, failed, etc)
#SBATCH --mail-user=email@u.northwestern.edu ## your email

module purge all module load python-anaconda3 source activate /projects/intro/envs/slurm-py37-test

IFS=\$'\n' read -d '' -r -a lines < list_of_files.txt</pre>

python slurm_test.py --job-id \$SLURM_ARRAY_TASK_ID --filename \${lines[\$SLURM_ARRAY_TASK_ID]}

SLURM: Job-Array Example (cont)

#SBATCH --account=w10001 ## YOUR ACCOUNT pXXXX or bXXXX #SBATCH --partition=w10001 ### PARTITION (buyin, short, normal, etc) #SBATCH --array=0-9%2 ## number of jobs to run "in parallel" the %2 restricts so that only 2 jobs max can be running simultaneously #SBATCH -- nodes=1 ## how many computers do you need #SBATCH --ntasks-per-node=1 ## how many cpus or processors do you need on each computer #SBATCH --time=00:10:00 ## how long does this need to run (remember different partitions have restrictions on this param) #SBATCH --mem-per-cpu=1G ## how much RAM do you need per CPU (this effects your FairShare score so be careful to not ask for more than you need)) #SBATCH --job-name="sample job \\${SLURM ARRAY TASK ID}" ## use the task id in the name of the job #SBATCH --output=sample job.%A %a.out ## use the jobid (A) and the specific job index (a) to name your log file #SBATCH --mail-type=ALL ## you can receive e-mail alerts from SLURM when your job begins and when your job finishes (completed, failed, etc) #SBATCH --mail-user=email@u.northwestern.edu ## your email module purge all module load python-anaconda3 source activate /projects/intro/envs/slurm-py37-test

```
IFS=$'\n' read -d '' -r -a lines < list_of_files.txt</pre>
```

python slurm_test.py --job-id \$SLURM_ARRAY_TASK_ID --filename \${lines[\$SLURM_ARRAY_TASK_ID]}

Dependent Jobs

SLURM: Dependency Example

#!/bin/bash

jid0=(\$(sbatch --time=00:10:00 --account=w10001 --partition=w10001 --nodes=1 --ntasks-per-node=1
--mem=8G --job-name=example --output=job %A.out example_submit.sh))

```
echo "jid0 ${jid0[-1]}" >> slurm_ids
```

jid1=(\$(sbatch --dependency=afterok:\${jid0[-1]} --time=00:10:00 --account=w10001 -partition=w10001 --nodes=1 --ntasks-per-node=1 --mem=8G --job-name=example --output=job_%A.out -export=DEPENDENTJOB=\${jid0[-1]} example submit.sh))

```
echo "jid1 ${jid1[-1]}" >> slurm_ids
```

```
jid2=($(sbatch --dependency=afterok:${jid1[-1]} --time=00:10:00 --account=w10001 --
partition=w10001 --nodes=1 --ntasks-per-node=1 --mem=8G --job-name=example --output=job_%A.out -
-export=DEPENDENTJOB=${jid1[-1]} example_submit.sh))
```

echo "jid2 \${jid2[-1]}" >> slurm_ids

SLURM: Dependency Example

```
#!/bin/bash
#SBATCH --mail-type=ALL ## you can receive e-mail alerts from SLURM when your job begins and
when your job finishes (completed, failed, etc)
#SBATCH --mail-user=email@u.northwestern.edu ## your email
```

```
if [[ -z "${DEPENDENTJOB}" ]]; then
    echo "First job in workflow"
```

```
else
```

```
echo "Job started after " $DEPENDENTJOB
```

```
fi
```

```
module purge all
module load python-anaconda3
source activate /projects/intro/envs/slurm-py37-test
```

python --version
python slurm_test.py

Architecture Constraints

SLURM: Constraints Example

#!/bin/bash #SBATCH --account=w10001 ## YOUR ACCOUNT pXXXX or bXXXX #SBATCH --partition=w10001 ### PARTITION (buyin, short, normal, etc) #SBATCH --nodes=2 ## how many computers do you need #SBATCH --ntasks-per-node=4 ## how many cpus or processors do you need on each computer #SBATCH --time=00:10:00 ## how long does this need to run (remember different partitions have restrictions on this param) #SBATCH --mem-per-cpu=1G ## how much RAM do you need per CPU (this effects your FairShare score so be careful to not ask for more than you need)) #SBATCH --job-name=sample job ## When you run squeue -u NETID this is how you can identify the job #SBATCH --output=outlog ## standard out and standard error goes to this file #SBATCH --mail-type=ALL ## you can receive e-mail alerts from SLURM when your job begins and when your job finishes (completed, failed, etc) #SBATCH --mail-user=email@u.northwestern.edu ## your email #SBATCH --constraint="[quest7|quest8|quest9|quest10]" ### you want computers you have requested to be from either quest7 or quest8 or quest9 or quest10 nodes, not a combination of nodes. Useful for MPI applications.

module purge all module load python-anaconda3 source activate /projects/intro/envs/slurm-py37-test

mpiexec -n \${SLURM NTASKS} python -m mpi4py.bench helloworld

SLURM Environmental Variables

```
[qnode0156 ~]$ printenv | grep SLURM
SLURM NODELIST=qnode[0156-0157]
SLURM NTASKS PER NODE=5
SLURM NNODES=2
SLURM JOBID=8177560
SLURM NTASKS=10
SLURM SUBMIT DIR=/home/tempuser03
SLURM NPROCS=10
```

[quser21 ~]\$ srun -N 2 --ntasks-per-node=5 --mem=10G --account=a9009 --partition=all

SLURM: Environmental Variables

--time=00:10:00 --pty bash -1